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Why big data: historical view? RUITGERS
—

11 Productivity versus Complexity (interrelatedness, ambiguity)

1 Complex versus Complicated

While the complicated can be unfolded for analysis, the
complex cannot.

Big Machines
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Knowledge for
Business Operation

Hardware Storage Big Data



Similarities Between Data Miners s unversmy or new sersey

and Doctors RUTGERS

Very Often, No
Standardized Solutions

e

Data Mining Techniqgues Medic

al Devices
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So What is Big Data?  RUTGERS

Big Data refers to datasets that grow so large that it is
difficult to capture, store, manage, share, analyze
and visualize with the typical database software tools.




What Makes it Big Data?
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“Big” is also a relative concept.

Data Size / Solution-Time-Window >= Computing Capacity Per Time Unit



Big Data Use Cases

Today’s Challenge

Healthcare
Expensive office visits
Hospital Dynamics

Manufacturing
In-person support

Location-Based Services
Based on home zip code

Finance
Fast-paced, Variety

Retalil
One size fits all
marketing

New Data
Remote patient
monitoring,
Hospital Sensors

Product sensors

Real time location data

Social Media, High-
frequency Trading Data

Market basket data,
user behavior logs

Preventive care, reduced
hospitalization, reduced
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What’s Possible

human mistakes

Automated diagnosis,
customized support

Geo-advertising, urban
computing, mobile
recommendation

Sentiment analysis
Finance engineering

Personalized
Recommendation,
Segmentation




10 Ways Mobile Tech Is P ITr—rD cC
Changiyng Our World RUTGERS
1. Elections Will Never Be
The Same
1. Doing Good By Texting
2. Bye-Bye, Wallets
3. The Phone Knows All
4. Your Life Is Fully Mobile
5. The Grid Is Winning
6. A Camera Goes Anywhere
7. Toys Get Unplugged
8. Gadgets Go To Class
9. Disease Can't Hide
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Human Mobility RUTGERS

]
- Human mobility 1s people’s movement

trajectories which can be
Phone traces or trajectories of driving routes

a sequences of posts (like geo-tweets, geo-tagged
photos, or check-ins)

=1 Indoor Traces and Outdoor Traces.
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Urban Geography

- Urban geography

road networks, publ
places of interest (POIs), re
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S a set of geographic
characteristics of a city including

IC transportation
gional functions
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Public transportation data RUTGERS

Table 2: Statistics of Transportation Data

Dataset Year 2011
num of bus stop 9810
num of buses 28.343
Bus Stop num of lines 948
length of lines (km) 187,453
total kms travelled (km) 1.753.000.000
total passengers trathc 4,888.380.000
num of subway station 215
Subway num of lines 15
length of lines(km) 339.5
average trathic/day(million)[5.1
Road Networl LM Qf rf_?-ad E-H:Tgl’l%&l’lt&-} 162,246
percentage of major roads [0.189
num of formal regions 554




Point of Interests (IPOI)
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Figure 5: POI distribution over different category
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POI category POI code
16

car service
car sales
car repair
motorcycle service
café/tea Bar
sports/stationery shop
living service
sports
hospital
hotel
scenic spot

residence

governmental agencies and public
organizations

science and education

transportation facilities

17
18
19
20
21
22
23
24
25
26
27

28

29
30

POI category

banking and insurance service
corporate business
street furniture
entrance/bridge
public utilities
chinese restaurant
foreign restaurant
fastfood restaurant
shopping mall
convenience store
electronic products store

supermarket
furniture building materials market

pub/bar

theaters
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Outdoor Location Traces RUTGERS

Taxi GPS trajectories

Table 3: Statistics of Mobility Data

Dataset Year 2011
num of taxi 13,597
num of occupied trips 8,202,012

Taxi trajectories num of effective days 92
average trip distance(km) 7.47
average trip duration(min) 16.1

average sampling interval (sec)

70.45
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Data Analytics RUTGERS

Understand goals of business
Collaborate in interdisciplinary teams

Integrate large volumes of structured and unstructured data

Formulate problems, develop solutions

Blend statistical modeling, data mining, forecasting, optimization

Develop /run integrated software solutions

<

Gain higher visibility
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Requirements RUTGERS
N
o Timely observation &
0 Timely analysis GIEINR

o Timely solution
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Big Data Application Trends RUTGERS
m

Applications/Techniques
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Theoretical top-down

solutions

'i
Data driven bottom- /1 )\ k
up solutions )

bt lesim-ups
proposils




Big Data Application T SRR
5 PP RUTGERS

Regquirements
_

Technical I Domain Big Data
Knowledge Knowledge Application
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Big Data Experiences RUTGERS

J Understanding Data Characteristics
» Data Distribution, Data Quality etc.

J Feature Engineering
» Feature engineering is one of the key strategy for the
success of big data analytics.
» The goal is to explicitly reveal important information to the
model by feature selection or feature generation
» Original features — different encoding of the features —
combined features

 Instance Selection (particularly mobile environment)

» The goal is to select the right instances/objects for the
underlying data analytics
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Mobile Recommender Systems  RUTGERS

Background

Revolution in Mobile Devices
GPS
WiFi
Mobile phone

The Urgent Demand for Better Service
Driving route suggestion
Mobile tourist guides

Definition

Mobile pervasive recommendation is promised to
provide mobile users access to personalized
recommendations anytime, anywhere.


http://image.baidu.com/i?ct=503316480&z=0&tn=baiduimagedetail&word=z%D6%C7%C4%DC%CA%D6%BB%FA&in=5279&cl=2&cm=1&sc=0&lm=-1&pn=16&rn=1&di=189860772&ln=1207
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Challenges for Mobile RUTGOEf{S

Recommendation (I)

Complexity of the Mobile Data
Heterogeneous
Spatial and temporal auto-correlation
Noisy

The Validation Problem
No Ratings

The Generality Problem

Different application domains with different
recommendation techniques



Challenges for Mobile RUTGOEIW{S

Recommendation (II)
_a

1 The Cost Constraints
Time

Price

0 The Life Cycle Problem
o The Transplantation Problem

‘

Difficult to apply traditional Recommendation
techniques for mobile recommendation



The Characteristics of AT TN
Mobile Data RUTGERS

Two Cases
Case 1. Location trace by taxi drivers
Case2. The tourism data

Why?
A good coverage of unique characteristics of mobile data

Can be naturally exploited for developing mobile
recommender systems

They are the real-world data
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Mobile Data
T2

Case 1. Location trace by taxi drivers

= Data Description

= GPS traces
Location information (Longitude, Latitude), timestamp
The operation status (with or without passengers)
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(a) Driving Hours (b) Occupancy Rates

@ Experienced drivers can usually have more driving hours and high occupancy rates

@ Inexperienced drivers tend to have less driving hours and low occupancy rates
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Mobile Data
2

Case 1. Location trace by taxi drivers

Driving pattern comparison
o E);penenced d:ivc-r l I l
180 — — — Inexperiencad driver|----- §...........\;.... ........: ............

140

120
100
> 80

80}

-20
100 200 200 400 500 200 700

A Comparison of Trajectories between an Experienced Driver and an Inexperienced Driver.

@ The experienced drivers have a wider operation area.

@ The experienced drivers know the roads as well the traffic patterns better.
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Case 1. Location trace by taxi drivers

Develop a mobile recommender system
Users ~ Taxi drivers

Items ~ Potential pick-up points

What did we learn?
The difference between Mobile RS and [ (sl
traditional RS w“f‘? - ’» & 4
The items are application-dependent "‘:;';Mm‘{" s

There is some cost to extract items
The items are not i.i.d while spatial

auto-correlation

An [llustration of Pick-up Points.
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Case2. The travel data

Data Description
Expense records

Tourists: ID, travel time
Package: ID, name, landscapes, price, travel days
Duration: 2000—2010
Recommender System
Users ~ Tourists
Items ~ Packages
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o

Case2. The travel data

Characteristics of Tourism Data (I)

m Spatial auto correlation of packages :
For example, the 1-day Niagara Falls Tour RO
m The Sparseness
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A comparison of the data sparseness between the movie data and the tourism data. (a) The per-
centage of users/tourists whose co-rating movies/co-traveling packages with their nearest neighbors are
no more than 20, (30, 40 for the movie users)/(2, 3, 4 for the tourists). (b) The percentage of users/tourists
whose rated movies are more than 100, 150, 200 in all movie users/whose traveling logs are 10, 15, 20 in
all tourists, respectively.

o
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Case2. The travel data

Characteristics of Tourism Data(II)
» The time dependence

Packages and tourists have seasonal tendency
Packages have a life cycle
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The illustration of the time-dependence of the tourism data. (a) The distribution of cumulative
percentages of packages/tourists by the number of their active months in a year; (b) The percentage of

remaining packages in the following several years after they have been introduced; (c) The percentage of
different packages and tourist logs according to their travel days.
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Given: a set of objects O={O,, O,, ..., O_}
Find:
An ordered subset S={S,, S,, ..., §;} € O

The order of §;, S,, ..., S, is optimized subject to

certain constraints.

dFor taxi driver recommendation, the set O is a
set of potential pick-up points

dFor travel package recommendation, the set O
is a set of l[andscapes.
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Theoretical top-down

solutions

'i
Data driven bottom- /1 )\ k
up solutions )

bt lesim-ups
proposils




JOBS: Projected shortage of 140,000-190,000 people with
deep analytical talent in the US by the year 2018.

Demand for deep analytical talent in the United States could be
50 to 60 percent greater than its projected supply by 2018

Supply and demand of deep analytical talent by 2018
Thousand people

140-190 440-490

r 1

50-60% gap
relative to
2018 supply

2008 Graduates Others' 2018 supply  Talent gap 2018 projected
employment  with deep demand
analytical
talent

1 Other supply drivers include attrition (-), immigration (+), and reemploying previously unemployed deep analytical talent (+).
SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey Global Institute analysis

Source: “Big data: The next frontier for innovation, competition, and productivity,” McKinsey Global Institute, May 2011.
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Understand goals of business
Collaborate in interdisciplinary teams

Integrate large volumes of structured and unstructured data

Formulate problems, develop solutions

Blend statistical modeling, data mining, forecasting, optimization

Develop /run integrated software solutions

<

Gain higher visibility
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‘

My WEB site: http://datamining.rutgers.edu
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