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主要内容

 B+-tree的问题

 LSM-tree的设计思想

 LSM-tree的实现

 LSM-tree的优缺点
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一、B+-tree的问题
 原位更新（In-Place Update）
 写代价高，写性能差

对叶节点的写基本都是随机写
级联分裂、合并等SMO操作带来大量的随机写

SMO：Structure Modifying Operation

B+-tree的特点：

• 读性能好
• 写性能差
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一、B+-tree的问题
 如何避免随机写？

采用log-structured的Append-only写
回顾：Undo日志、Redo日志

日志项不允许修改，只能Append

Append方式写日志一般可视作顺序写，写性能高
可以在支持随机读写的设备通过软件实现顺序写

也有设备只支持顺序写，如ZNS SSD，需要软件适配
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一、B+-tree的问题
 但是直接把B+-tree的节点改成Log Structured的 Append-Only不

能解决随机写的问题

叶节点需要有序
把新的键值Append到叶节点最后不行，会降低读性能

不同节点的更新依然是随机写
另一种思路：把所有叶节点的更新合并起来一起顺序写，并且可以推广到其它层，比如某一
层的节点每次更新都批量一起写入

大数据场景下，每一层如果是一个文件，每次写入都是顺序写
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二、LSM-tree的设计思路

 B+-tree: 写慢读快

 Logging：写快读慢

 LSM-tree：先保证写快，同时读也较快

write/inserts

re
ad

s

Slow Fast

Fa
st B+tree

Logging

LSM tree
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二、LSM-tree的设计思路
 Log-Structured Merge Tree

同时结合内存结构和磁盘结构（page-based）
数据先写到内存结构，然后再写入磁盘

Log-Structured：采用Append方式写磁盘数据
Merge Write：内存数据批量合并写入磁盘

将多个小的随机写转换为顺序写

数据分层写入磁盘
避免一次批量写的数据量过大

内存压力过大

批量写时IO太多

每一层的数据均有序
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二、LSM-tree的设计思路
 1996年由O‘Neil等提出，借鉴了Log-Structured思想（1992）
 2006年，Google的BigTable采用LSM-tree作为存储引擎

 被很多NoSQL引擎采用：HBase（2007），Cassendra（2010），LevelDB（2011，Google
），RocksDB（2013，Facebook）等

O'Neil P; et al. The log-structured merge-tree[J]. Acta Informatica, 1996, 33(04): 351-385.
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二、LSM-tree的设计思路

HBase

BigTable

LevelDB
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二、LSM-tree的设计思路

RocksDB
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三、LSM-tree的实现：以LevelDB为例
 LevelDB是一款写性能十分优秀的可持久化的KV存储引擎，其实现原理是依据

LSM-Tree（Log Structed-Merge Tree），由Google开源

可视作BigTable的开源版本。数据总是先写入DRAM，则批量分层顺序写入Disk
内存通过Memtable和Immutable Memtable两块区域轮转写，避免写阻塞

数据量小

数据量大

Block
Cache
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Memtable
 KV记录组织成有序的skiplist结构。大小由option.write_buffer_size确定，默

认4MB
Key和value均为变长字节流

SequenceNumber定义了version(56bits)和value_type(8bits)
删除KV时通过插入value_type为删除标记的记录来表示（0表示删除，1表示有效）

支持高效插入和二分查找的高效内存链表结构
类似一种内存多级索引结构
与内存B+树相比优势在于避免了插入操作时的平衡结构调整代价
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核心数据结构：SSTable（Sorted String Table）

 Page-based：大小可配置，例如2MB
所有KV在SST内都是有序存储

 Data Block: 用来存储key value数据对；

 Filter Block: 用来存储一些过滤器相关的数据（布
隆过滤器；

 Meta Index Block: 用来存储filter block的索引
信息（索引信息指在该sstable文件中的偏移量以
及数据长度）；

 Index Block：用来存储每个data block的索引信
息；

 Footer: 用来存储meta index block及index 
block的索引信息；
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核心数据结构：SSTable（Sorted String Table）

 Filter Block
使用Bloom Filter来加速存在性查询，减少无效IO
BF: A bit vector, each bit is calculated by a hash function returning 1 
or 0
Insert a key x∈S: first calculate hi(x), then set BF[hi(x)] = 1
Membership query “Is y∈S?”: calculate h1(y), h2(y), …, hk(y), compared 
with existing Bloom filters

x

0 0 1 0 0 1 0 1 …... 0 1 0
 h1(x)  h2(x)  h3(x)  hk(x)

BF vector
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核心数据结构：SSTable（Sorted String Table）

 Filter Block
Bloom Filter的False Positive Rate (fpr)

当BF没命中时，key肯定不存在SST中
但BF命中时，由于hash冲突特性可能出现假阳性 (实际SST中并不存在key)

导致无效的Index Block查询

x

0 0 1 0 0 1 0 1 …... 0 1 0
 h1(x)  h2(x)  h3(x)  hk(x)
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LSM-tree的Write过程
 写数据的过程

当收到一个写请求时，会先把该条数据记录在WAL Log
里面，用作故障恢复
当写完WAL Log后，会把该条数据写入Memtable
当Memtable超过一定的大小后，会在内存里面冻结，
变成不可更新的Immutable Memtable，同时新生成
一个Memtable继续提供服务
当Immutable Memtable数量超过阈值时Flush到磁盘
上的L0层，此步骤也称为
Minor Compaction

Flush是顺序写

L0层的SSTable的key range可能会出现重叠，在层数大于L0层之
后的SSTable，不存在重叠key

当每层的SSTable的score超过阈值（score基于大小或
者SST文件个数计算），触发Major Compaction，避
免浪费空间

注意由于SSTable都是有序的，所以采用merge sort进行高效合并
。

Block
Cache
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LSM-tree的Write过程
 写数据的过程

如果是随机的Insert操作，直接写入Memtable，很快
如果是删除操作？

因为SSTable不可更改，所以将删除操作转换为Insert操作，但是在key的SequenceNumber中使用一个1字节的
特殊标记表示该key已经被删除

如果有频繁的删除操作，将使得SSTable中存在很多无效的数据

这些数据将在Compaction时回收
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LSM-tree的Read过程
 读数据的过程

当收到一个读请求的时候，会直接先在
Memtable和Immutable Memtable里查询
，如果查询到就返回
如果没有查询到就会依次下沉，直到把所有的
Level查询一遍得到最终结果
很显然，越往下层查询IO代价越高
LevelDB采用的读优化策略

增加Block Cache
增加Filter Block（使用Bloom Filter），如果
Key在某个SST中不存在可以避免扫描SSTable
增加Index Block，避免扫描整个SSTable的所
有Block

Block
Cache
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LSM-tree的Compaction操作
 Compaction操作

Minor Compaction
Immutable MemTable -----> SSTable (L0)
L0中的每个SSTable内部有序，但SSTable之间可能会存在重复的key（因为是整个
Immutable Memtable dump到文件）

Flush
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LSM-tree的Compaction实现
 Compaction操作

Major Compaction
L0 --> L1， L2 --> L3，…， SSTable (𝐿𝐿𝑖𝑖) --> SSTable (𝐿𝐿𝑖𝑖+1)
当Li层的score超过阈值时（基于文件数和大小计算）

L0的文件数不能太多，重复key range会影响读性能
L1开始每一层每次只会读一个SST，所以读性能不受文件数影响，但文件
数过多会增加Compaction的IO代价
因此，LevelDB中默认L0层10MB，L1开始按10倍数限制文件数，即L1
为100MB，L2为1000MB

Compaction时执行垃圾回收，抛弃掉已经被删除的KV，减小
SSTable数量和大小

L0 --> L1的Major Compaction具体过程
选择L0层的第一个文件
将L0与L1中所有与选中文件的key range重叠的文件都读入内存
多路归并排序，并抛弃掉无效的KV
按照SST大小重新写入L1层 （注意L1的SST大小可能与L0不同）
如果L1层也触发了compaction条件，则会继续触发L1合并
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LSM-tree的Compaction实现
 Major Compaction

L1 --> L2， L2 --> L3, ….
L1层开始每一层的SST文件key range不存在重叠

Size Compaction
当Li层的score超过阈值时（基于文件数和大小计算），SST数目/Li层允许的大小
选择Li层一个执行合并的SST文件（round-robin方式轮询）
将Li+1层中所有与Li层选中的SST文件的key range都重叠的文件作为候选合并对象
多路归并排序，并抛弃掉无效的KV
按照SST大小重新写入Li+1层
如果Li+1层也触发了compaction条件，则会继续触发合并
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LSM-tree的Compaction实现
 Major Compaction

L1 --> L2， L2 --> L3, ….
L1层开始每一层的SST文件key range不存在重叠，但不同层之间
可能存在重叠
存在问题

如果key查询总是在Level k没命中（seek miss），导致查询下推到Level k+1，
则会增加查询IO代价，影响读性能
Index中只存储Max Key（非密集索引）

Seek Compaction
为每个SST引入一个allowed_seeks参数
每次SST触发seek miss， 并将allowed_seeks减1
当allowed_seeks=0时，触发seek compaction
将触发的SST以及下一层中重叠范围的SST读入内存
排序后写入下一层

不同level之间的key overlap

key overlap导致seek miss
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LSM-tree的Compaction实现
 Size Compaction也叫Leveled Compaction

Compaction之后每一层形成了一个全局有序的run
如果每一层中compaction之后存在多个有序的run，则称为Tiered Compaction

Minor Compaction就是一种Tier Compaction
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四、LSM-tree在HBase上的实现
 HBase：Hadoop dataBase

HBase

HDFS
Zookeeper

Google的GFS (SOSP’03)
和Bigtable (OSDI’06)
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HBase简介
 HBase：Hadoop dataBase

起源于Google Bigtable
Column Store，同时也使用了Key/Value存储
分布式数据库，支持海量数据存储
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HBase数据模型

 从行存储到列存储

EmpId Lastname Firstname Salary
1 Smith Joe 40000
2 Jones Mary 50000
3 Johnson Cathy 44000

数据格式（行存储）：
1, Smith, Joe, 40000;

2, Jones, Mary, 50000;

3, Johnson, Cathy, 44000;

数据格式（列存储）：
1,2,3;

Smith, Jones, Johnson;

Joe, Mary, Cathy;

40000, 50000, 44000;
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HBase数据模型

 为什么用列存储？

降低查询I/O代价
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HBase相关概念
 表（Table）：HBase采用表来组织数据，表

由行和列组成，列划分为若干个列族

 行（Row）：每个HBase表都由若干行组成，
每个行由行键（row key）来标识

 列族（Column Family）：一个HBase表被分
组成许多“列族”（Column Family）的集合
，每个列族有动态的列集合

 列限定符（Column Qualifier）：列族里的数
据通过列限定符来定位

 单元格（Cell）：在HBase表中，通过行、列
族和列限定符确定一个“单元格”（cell），
单元格中存储的数据没有数据类型，都是字节
流

 时间戳（Version）：每个单元格都保存着同
一份数据的多个版本，这些版本采用时间戳进
行索引
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Table的逻辑结构

行键
时
间
戳

列族contents 列族anchor

"com.cnn
.www"

t5 anchor:cnnsi.com=”CNN”
t4 anchor:my.look.ca="CNN.com"

t3 contents:html="<
html>..." 

t2 contents:html="<
html>..." 

t1 contents:html="<
html>..." 
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Table的物理存储结构

Table的每个列族存储在单独的文件中
Row Key & Version numbers 在每个列族中复制
空cell不存储

列族contents
行键 时间戳 列族contents

"com.cnn.www" t3 contents:html="<html>..."
"com.cnn.www" t2 contents:html="<html>..."
"com.cnn.www" t1 contents:html="<html>..."

列族anchor

行键 时间戳 列族anchor

"com.cnn.www" t5 anchor:cnnsi.com=”CNN”
"com.cnn.www" t4 anchor:my.look.ca="CNN.com"
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Table的物理存储结构
 Table和Region

Table中所有行按Row Key排序
单个Table一开始只有一个Region
随着记录越来越多，单个Region太大，达到阈值，分裂成2个Region
Region是HBase中分布式存储分配的最小单元
不同Region分布在不同的Region Server上
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HBase架构
• 管理用户对table的创建、删除、修改操作
• 为Region server分配region
• 负责Region server的负载均衡
• 发现失效的Region server并重新分配其

上的region（通过Zookeeper实现）
• 不负责实际数据操作
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HBase架构
• 维护region，处理对这些region的IO

请求，直接与client进行数据通信
• 负责切分（split）在运行过程中变得

过大的region
• 对region进行compact操作
• 在运行中可以动态添加、删除
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HBase架构

• 包含访问HBase的接口，并维
护cache来加快对HBase的访
问，比如region的位置信息
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HBase架构
• 通过voting保证任何时候集群中只有一个HMaster，

HMaster与Region Server启动时会向Zookeeper注册
• 存储所有Region的寻址入口
• 实时监控Region Server的上线和下线信息，并实时通

知给HMaster
• 存储HBase的schema和table元数据
• Zookeeper的引入使得HMaster不再是单点故障
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HBase vs RocksDB
 Memstore=Memtable+Immutable Memtable
 HFile=SST
 WAL和Block Cache相同

 Region=Column Family

RocksDBHBase
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五、LSM-tree的总结
 优点

把随机写操作转化为顺序写，支持高吞吐的写（尤其适合分布式大数据应用场景）
采用Append方式写数据，读写操作相互独立，可以支持高并发应用
适合写多读少的应用

 缺点

读性能较差，尤其是range query
空间放大严重，需要Compaction才能回收空间
Compaction操作导致系统性能抖动

系统资源消耗高
I/O代价（写放大、I/O带宽消耗）
CPU和内存消耗

Block Cache失效
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六、Compaction优化

Throughput

正在Compact的
SSTable文件数

TPC-C@sysbench OLTP@sysbench

Compaction对LSM-tree性能的影响
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六、Compaction优化
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一些Compaction优化工作
 SILK （ATC 2019, Best Paper）

针对周期性有峰值的负载，高负载时延迟下层合并但继续上层合并，低负载时再执行下层
合并

Oana Balmau et al. SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores. ATC 2019 (Best Paper)
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一些Compaction优化工作
 FPGA-Accelerated Compaction (FAST’20)

理论上有助于平滑LSM-tree性能的抖动
需要专用的FGPA及驱动支持
Offloading Compaction to DPUs? 

Teng Zhang et al. FPGA-Accelerated Compactions for LSM-based Key-Value Store. FAST 2020
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一些Compaction优化工作
 Offload Compaction (VLDB’15)

借助独立的Compaction Server来完成合并，从而不消耗本地Server的IO和CPU资源

Muhammad Yousuf Ahmad et al. Compaction management in distributed key-value datastores. VLDB 2015
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一些Compaction优化工作
 FaaS Compaction (CIKM’21)

FaaS: Function as a Service
函数即服务，新型Elastic Computing
根据需求自动扩/缩容，按需计算成本
2014年提出，大厂迅速跟进

Amazon AWS Lamda (2014)
Google Cloud (2016)
阿里、腾讯、字节 …

思路
当需要执行Compaction时，将任务发送给
FaaS实例执行
从而不占用本地服务器的资源，保证系统性能
的稳定性

Jianchuan Li et al Elastic and Stable Compaction for LSM-tree: A FaaS-Based Approach on TerarkDB. CIKM 2021
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一些Compaction优化工作

 BlockDB：键值数据库引擎的自适应块合并 (ICDE’22)
自适应合并：动态选择合并粒度：SSTable或者Block，减少不必要的数据重写，
降低缓存失效率

Xiaoliang Wang, et al.: Reducing Write Amplification of LSM-Tree with Block-Grained Compaction. ICDE 2022: 3119-3131

https://dblp.org/db/conf/icde/icde2022.html#WangJHLH22
https://dblp.org/db/conf/icde/icde2022.html#WangJHLH22
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一些Compaction优化工作

 Leaper：通过预取解决Compaction导致的Block Cache失效问题 (VLDB’20)
学习型缓存预取：通过预测存储引擎中的热数据并且在访问之前将他们预取到Block Cache中
来避免Compaction导致的Block Cache Invalidation问题

Block Cache Invalidation
Leaper

将合并影响的块换出(T1)，将受影响的数据中的热数据预取入缓存(T2)

Lei Yang, et al.: Leaper: A Learned Prefetcher for Cache Invalidation in LSM-tree based Storage Engines. Proc. VLDB Endow. 13(11): 1976-1989 (2020)

https://dblp.org/db/journals/pvldb/pvldb13.html#YangWZCLZWCWH20
https://dblp.org/db/journals/pvldb/pvldb13.html#YangWZCLZWCWH20
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本章小结

 B+-tree的问题

 LSM-tree的设计思想

 LSM-tree的实现

 LSM-tree的优缺点
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