
Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL Databases I:
Introduction

2Advanced Database Systems 金培权（jpq@ustc.edu.cn）

主要内容

 NoSQL简介

 NoSQL主要的类型

 NoSQL的分布式系统基础

 MongoDB

3Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL简介
 Definition (from http://nosql-database.org)

Next Generation Databases mostly addressing some of the points: being non-
relational, distributed, open-source and horizontal scalable.
The original intention has been modern Web-scale databases. The movement began
early 2009 and is growing rapidly. Often more characteristics apply as: schema-free,
easy replication support, simple API, eventually consistent /BASE (not ACID),
a huge data amount, and more.
So the misleading term "nosql" (the community now translates it mostly with "not
only sql") should be seen as an alias to something like the definition above.

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

4Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL简介

 NoSQL特点：
Non relational
Scalability
No pre-defined schema
CAP not ACID

5Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL简介

 现在已有很多公司使用了NoSQL数据库：

Google
Facebook (Meta)
Adobe
Foursquare
LinkedIn
百度、腾讯、阿里、新浪、华为……

6Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL兴起的原因
RDBMS无法满足Web 2.0的需求：

无法满足海量数据的管理需求

无法满足数据高并发的需求

无法满足高可扩展性和高可用性的需求

7Advanced Database Systems 金培权（jpq@ustc.edu.cn）

MySQL集群能否解决问题？

• 复杂性：部署、管理、配置复杂

• 数据库复制：MySQL主备之间采用异步复
制方式，当主库压力较大时将产生较大延迟
，主备切换可能会丢失最后一部分更新事务
，往往需要人工介入，备份和恢复不方便

• 扩容问题：如果系统压力过大需要增加新的
机器，这个过程涉及数据重新划分，整个过
程比较复杂，且容易出错

• 动态数据迁移问题：如果某个数据库组压力
过大，需要将其中部分数据迁移出去，迁移
过程需要总控节点整体协调，以及数据库节
点的配合。这个过程很难做到自动化

8Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL兴起的原因

“One size fits all”模式很难适用于截然不同的业务场景

关系模型作为统一的数据模型既被用于数据分析（OLAP），也被用
于在线业务（OLTP）。但这两者一个强调高吞吐，一个强调低延时
，已经演化出完全不同的架构。用同一套模型来抽象显然是不合适的

Hadoop就是针对数据分析

MongoDB、Redis等是针对在线业务，两者都抛弃了关系模型

9Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL兴起的原因

关系数据库的关键特性包括完善的事务机制和高效的查询机制。
这些关键特性在Web 2.0时代出现了变化：

Web 2.0网站系统通常不要求严格的数据库事务

Web 2.0并不要求严格的读写实时性

Web 2.0通常不包含大量复杂的SQL查询（去结构化，存储空间换取
更好的查询性能）

10Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL vs. RDBMS
比较标准 RDBMS NoSQL 备注

数据库原理 完全支持 部分支持
• RDBMS有关系代数理论作为基础
• NoSQL没有统一的理论基础

数据规模 大 超大

• RDBMS很难实现横向扩展，纵向扩展的空间也有限，性
能会随着数据规模的增大而降低

• NoSQL可以很容易通过添加更多设备来支持更大规模的
数据

数据库模式 固定 灵活

• RDBMS需要定义数据库模式，严格遵守数据定义和相关
约束条件

• NoSQL不存在数据库模式，可以自由灵活定义并存储各
种不同类型的数据

查询效率 快

可以实现高效的简
单查询，但是不具
备高度结构化查询
等特性，复杂查询
的性能不尽人意

• RDBMS借助于索引机制可以实现快速查询（包括记录查
询和范围查询）

• 很多NoSQL数据库没有面向复杂查询的索引，虽然
NoSQL可以使用MapReduce来加速查询，但是，在复杂
查询方面的性能仍然不如RDBMS

11Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL vs. RDBMS (cont.)
比较标准 RDBMS NoSQL 备注

一致性 强一致性 弱一致性
• RDBMS严格遵守事务ACID模型，可以保证事务强一致性
• NoSQL数据库放松了对事务ACID的要求，而是遵守BASE

模型，只能保证最终一致性

数据完整性 容易实现 很难实现

• RDBMS可以很容易实现数据完整性，比如通过主键来实
现实体完整性，通过外键来实现参照完整性，通过check
约束或者触发器来实现用户自定义完整性

• 但是，在NoSQL数据库却无法实现

扩展性 一般 好
• RDBMS很难实现横向扩展，纵向扩展的空间也比较有限
• NoSQL在设计之初就考虑了横向扩展的需求，可以很容易

通过添加廉价设备实现扩展

可用性 好 很好
• RDBMS为了保证严格的数据一致性，只能提供相对较弱

的可用性
• 大多数NoSQL都能提供较高的可用性

12Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL vs. RDBMS (cont.)
比较标准 RDBMS NoSQL 备注

标准化 是 否

• RDBMS已经标准化（SQL）
• NoSQL还没有行业标准，不同的NoSQL数据库都有自己的

查询语言和应用程序接口。NoSQL缺乏统一查询语言，将
会拖慢NoSQL发展

技术支持 高 低

• RDBMS经过几十年的发展，已经非常成熟，Oracle等大型
厂商都可以提供很好的技术支持

• NoSQL在技术支持方面仍然处于起步阶段，还不成熟，缺
乏有力的技术支持

可维护性 复杂 复杂
• RDBMS需要专门的数据库管理员(DBA)维护
• NoSQL数据库虽然没有RDBMS复杂，也难以维护

13Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL vs. RDBMS
 RDBMS

优势：以完善的关系代数理论作为基础，有严格的标准，支持事务ACID，提供严格的数据一致
性，借助索引机制可以实现高效的查询，技术成熟，有专业公司的技术支持

劣势：可扩展性较差，无法较好支持海量数据存储，采用固定的数据库模式，无法较好支持Web
2.0应用，事务机制影响系统的整体性能等

 NoSQL
优势：可以支持超大规模数据存储，数据分布和复制容易，灵活的数据模型可以很好地支持Web
2.0应用，具有强大的横向扩展能力等

劣势：缺乏数学理论基础，复杂查询性能不高，大都不能实现事务强一致性，很难实现数据完整
性，技术尚不成熟，缺乏专业团队的技术支持，维护较困难，目前处于百花齐放的状态，用户难
以选择（120+产品 listed in http://nosql-database.org ）等

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

14Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL vs. RDBMS
 RDBMS和NoSQL各有优缺点，彼此无法取代

 RDBMS应用场景

电信、银行等领域的关键业务系统，需要保证强事务一致性

 NoSQL数据库应用场景

互联网企业、传统企业的非关键业务（比如数据分析）

 采用混合架构

案例：亚马逊公司就使用不同类型的数据库来支撑它的电子商务应用

对于“购物篮”这种临时性数据，采用键值存储会更加高效

当前的产品和订单信息则适合存放在关系数据库中

大量的历史订单信息则适合保存在类似MongoDB的文档数据库中

15Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL的主要类型
 键值数据库、列存储数据库、文档数据库和图数据库

Key_1

Key_2

Key_3

Key_4

Key_5

Key_6

Key_7

Key_8

Value_1

Value_2

Value_1

Value_3

Value_2

Value_1

Value_4

Value_3

键值数据库

Column
Name-3

Column
Value-3

Column
Name-2
Column
Value-2

Column
Name-1
Column
Value-1

Column
Name-4

Column
Value-4

Column
Name -5

Column
Value-5

Column
Name-6
Column
Value-6

Dataset
Column-Family- 1 Column-Family- 2

Column-Family- 1

Row
Key-1

Row
Key -2

列存储数据库

16Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL的主要类型
 键值数据库、列存储数据库、文档数据库和图数据库

Key-
Value
Node1

Key-
Value
Node2

Key-
Value
Node3

Key-Value1

Key-Value2

Key-Value2Key-Value1

图形数据库

Dataset

Document_id-1

Document_id-2

Document_id-3

Document_id-4

Document-1

Document-2

Document-3

Document-4

文档数据库文档数据库 图数据库

17Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL的主要类型

文档数据库 图数据库

键值数据库 列存储数据库

18Advanced Database Systems 金培权（jpq@ustc.edu.cn）

键值数据库（Key-Value Store）
相关产品 Redis、Memcached、LevelDB、RocksDB、SimpleDB、Chordless、Scalaris

数据模型
• 键/值对
• 键是一个字符串对象
• 值可以是任意类型的数据，比如整型、字符型、数组、列表、集合等

典型应用
• 涉及频繁读写、拥有简单数据模型的应用
• 内容缓存，比如会话、配置文件、参数、购物车等
• 存储配置和用户数据信息的移动应用

优点 扩展性好，灵活性好，大量写操作时性能高

缺点 无法存储结构化信息，条件查询效率较低

使用者
百度云数据库（Redis）、GitHub（Riak）、BestBuy（Riak）、Twitter（Redis

和Memcached）、StackOverFlow（Redis）、Youtube（Memcached）、
Wikipedia（Memcached）

不适用情形

• 不是通过键而是通过值来查：键值数据库根本没有通过值查询的途径

• 需要存储数据之间的关系：在键值数据库中，不能通过两个或两个以上的键
来关联数据

• 需要事务的支持：在一些键值数据库中，产生故障时，不可以回滚

19Advanced Database Systems 金培权（jpq@ustc.edu.cn）

键值数据库（Key-Value Store）
 键值数据库成为理想的缓冲层解决方案

 支持持久化、数据恢复、更多数据类型

20Advanced Database Systems 金培权（jpq@ustc.edu.cn）

列存储数据库（Column Store）

相关产品 BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS

数据模型 列族 （Column Family）

典型应用

• 分布式数据存储与管理
• 数据在地理上分布于多个数据中心的应用程序
• 可以容忍副本中存在短期不一致情况的应用程序
• 拥有动态字段的应用程序
• 拥有潜在大量数据的应用程序，大到几百TB的数据

优点 查找速度快，可扩展性强，容易进行分布式扩展，复杂性低

缺点 功能较少，大都不支持强事务一致性

使用者
EBay（Cassandra）、Instagram（Cassandra）、NASA（Cassandra）、

Twitter（Cassandra and HBase）、Facebook（HBase）、Yahoo!（HBase）

不适用情形 需要ACID事务支持的情形，Cassandra等产品就不适用

21Advanced Database Systems 金培权（jpq@ustc.edu.cn）

文档数据库（Document Store）

相关产品
MongoDB、CouchDB、Terrastore、ThruDB、RavenDB、SisoDB、RaptorDB、

CloudKit、Perservere、Jackrabbit、SequoiaDB

数据模型
• 键/值
• 值（value）是版本化的文档

典型应用
• 存储、索引并管理面向文档的数据或者类似的半结构化数据
• 比如，用于后台具有大量读写操作的网站、使用JSON数据结构的应用、使

用嵌套结构等非规范化数据的应用程序

优点
• 性能好（高并发），灵活性高，复杂性低，数据结构灵活
• 提供嵌入式文档功能，将经常查询的数据存储在同一个文档中
• 既可以根据键来构建索引，也可以根据内容构建索引

缺点 缺乏统一的查询语法

使用者
百度云数据库（MongoDB）、SAP （MongoDB）、Codecademy

（MongoDB）、Foursquare （MongoDB）、NBC News （RavenDB）

不适用情形
在不同的文档上添加事务。文档数据库并不支持文档间的事务，如果对这方
面有需求则不应该选用这个解决方案

22Advanced Database Systems 金培权（jpq@ustc.edu.cn）

文档数据库（Document Store）
“文档”其实是一个数据记录，这个记录能够对包含的数据类型和内容进行“自我描述”
。XML文档和JSON文档就属于这一类。SequoiaDB(巨杉)就是使用JSON格式的文档数
据库，它的存储的数据是这样的：

23Advanced Database Systems 金培权（jpq@ustc.edu.cn）

文档数据库（Document Store）

• 数据是不规则的，每一条记录包含了所有的有关“SequoiaDB”的信息而没有任何外
部的引用，这条记录就是“自包含”的

• 这使得记录很容易完全移动到其他服务器，因为这条记录的所有信息都包含在里面了
，不需要考虑还有信息在别的表没有一起迁移走

• 同时，因为在移动过程中，只有被移动的那一条记录（文档）需要操作，而不像关系
型中每个有关联的表都需要锁住来保证一致性

24Advanced Database Systems 金培权（jpq@ustc.edu.cn）

图数据库（Graph Store）

相关产品 Neo4J、OrientDB、InfoGrid、InfiniteGraph、GraphDB

数据模型 图结构

典型应用
专门用于处理具有高度相互关联关系的数据，比较适合于社交网络、模
式识别、依赖分析、推荐系统以及路径寻找等问题

优点 灵活性高，支持复杂的图算法，可用于构建复杂的关系图谱

缺点 复杂性高，只能支持一定的数据规模

使用者 Adobe（Neo4J）、Cisco（Neo4J）、T-Mobile（Neo4J）

25Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Overall Rank

26Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Overall Rank (cont.)
 关系数据库仍是主流，但NoSQL比例在不断增长

27Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Overall Rank (cont.)

时序数据库（2022热点） 向量数据库（2024热点）

图数据库（长期热点） 文档数据库（近期热点）

28Advanced Database Systems 金培权（jpq@ustc.edu.cn）

NoSQL的分布式系统基础

NoSQL

BASECAP

Note：基本都是分布式系统中的技术，跟数据库系统关系不大

29Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 C（Consistency）：一致性—— all nodes see the same data at the same time

是指任何一个读操作总是能够读到之前完成的写操作的结果，也就是在分布式环境中，多点的数据是一致
的，或者说，所有节点在同一时间具有相同的数据

 A:（Availability）：可用性——reads and w rites always succeed
是指快速获取数据，可以在确定的时间内返回操作结果，保证每个请求不管成功或者失败都有响应

 P（Tolerance of Network Partition）：分区容忍性——the system continues to operate
despite arbitrary message loss or failure of part of the system

是指当出现网络分区的情况时（即系统中的一部分节点无法和其他节点进行通信），分离的系统也能够正
常运行，也就是说，系统中任意信息的丢失或失败不会影响系统的继续运作。

30Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 Brewer‘s Theorem (CAP Theorem): 一个分布式系统不可能同时满足一致性、

可用性和分区容忍性这三个需求，最多只能同时满足其中两个 (Brewer, 2000;
Gilbert, 2002)

Brewer, Eric A. (2000): Towards Robust Distributed Systems. Keynote at the ACM Symposium on Principles of Distributed Computing (PODC).
Gilbert, S., & Lynch, N. (2002): Brewers Conjunction and the Feasibility of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT
News, p. 33(2).

31Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 一个牺牲一致性来换取可用性的实例

（a）初始状态

P1

M1

P2

M2

V1=val0

V2=val0

32Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 一个牺牲一致性来换取可用性的实例

（b）正常执行过程

33Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 一个牺牲一致性来换取可用性的实例

P1

M1

V1=val0

val1

P2

M2

1 2 3

P1

M1

传播新值val1失败

P2

M2

P1

M1

P2

M2

val0
V2=val0

V1=val1

V2=val0

V1=val1

V2=val0

进程P1把副本V1的值从

val0更新为val1

副本V1的新值val1无法传

播到副本V2

进程P2从副本V2中依然

读取旧值val0

(c) 更新传播失败时的执行过程

34Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP
 当处理CAP的问题时，有几个明显的选择：

CA：也就是强调一致性（C）和可用性（A），放弃分区容忍性（P），最简单
的做法是把所有与事务相关的内容都放到同一台机器上。很显然，这种做法会严
重影响系统的可扩展性。传统的关系数据库（MySQL、SQL Server和
PostgreSQL），都采用了这种设计原则，因此，扩展性都比较差

CP：也就是强调一致性（C）和分区容忍性（P），放弃可用性（A），当出现
网络分区的情况时，受影响的服务需要等待数据一致，因此在等待期间就无法对
外提供服务

AP：也就是强调可用性（A）和分区容忍性（P），放弃一致性（C），允许系
统返回不一致的数据

35Advanced Database Systems 金培权（jpq@ustc.edu.cn）

CAP

不同产品在CAP理论下的不同设计原则

选择CA，放弃P
MySQL
SQL Server
PostgresSQL

Dynamo
Cassandra
Voldemort
CouchDB

Neo4J, BigTable, MongoDB, HBase, HyperTable, Redis

选择AP，放弃C

选择CP，放弃A

A

C P

36Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BASE
 BASE（Basically Available, Soft-state, Eventual

consistency (Pritchett, 2008)
是对CAP理论的延伸

ACID BASE
原子性(Atomicity) 基本可用(Basically Available)
一致性(Consistency) 软状态/柔性事务(Soft state)

隔离性(Isolation) 最终一致性 (Eventual
consistency)

持久性 (Durable)

Dan Pritchett. (2008): BASE: An ACID Alternative. ACM Queue, Vol.6(3): 48-55

BASE vs. ACID

37Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BASE
 事务的ACID回顾

A（Atomicity）：原子性，是指事务中的操作要么全都执行，要么
全都不执行

C（Consistency）：一致性，是指事务在完成时，必须使所有的数
据都保持一致状态

I（Isolation）：隔离性，是指由并发事务所做的修改必须与任何其
它并发事务所做的修改隔离

D（Durability）：持久性，是指事务完成之后，它对于系统的影响
是持久性的

38Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BASE
 Basically Available

基本可用，是指一个分布式系统的一部分发生问题变得不可用时，其
他部分仍然可以正常使用。也即允许损失部分可用性。

 Soft-state
“软状态（Soft-state）”是与“硬状态（Hard-state）”相对应
的一种提法。数据库保存的数据是“硬状态”时，可以保证数据一致
性，即保证数据一直是正确的。“软状态”是指状态可以有一段时间
不同步，具有一定的滞后性

39Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BASE
 Eventual consistency

一致性的类型包括强一致性和弱一致性。对于强一致性而言，当执行完一次更新
操作后，后续的其他读操作就可以保证读到更新后的最新数据。如果不能保证后
续访问读到的都是更新后的最新数据，那么就是弱一致性。

最终一致性是弱一致性的一种特例，允许后续的访问操作可以暂时读不到更新后
的数据，但是经过一段时间之后，必须最终读到更新后的数据。

最常见的实现最终一致性的系统是DNS（域名系统）。一个域名更新操作根据配置的形式被
分发出去，并结合有过期机制的缓存；最终所有的客户端可以看到最新的值。

Advanced Database Systems 金培权（jpq@ustc.edu.cn）

MongoDB
A Document Store

41Advanced Database Systems 金培权（jpq@ustc.edu.cn）

主要内容

 MongoDB简介

 MongoDB数据模型

 MongDB架构

 MongoDB扩展性

42Advanced Database Systems 金培权（jpq@ustc.edu.cn）

MongoDB
Developed by 10gen （now MongoDB Inc.）: “humongous” DB，Founded in 2007
始终是最流行的NoSQL数据库系统

2019 2026

43Advanced Database Systems 金培权（jpq@ustc.edu.cn）

What is a Document DB?
 Document databases store documents in the value

part of the key-value store where:
Documents are indexed using a B-tree
queried using e.g, JavaScript query engine

44Advanced Database Systems 金培权（jpq@ustc.edu.cn）

MongoDB: Data Model
Hierarchical Objects

• A MongoDB instance may have zero or
more ‘databases’

• A database may have zero or more
‘collections’.

• A collection may have zero or more
‘documents’. (e.g., 16MB/doc)

• A document may have one or more ‘fields’.

• MongoDB ‘Indexes’ function much like their
RDBMS counterparts.

Databases

 Collections

 Documents

 Fields

45Advanced Database Systems 金培权（jpq@ustc.edu.cn）

RDB Concepts to Document DB
RDBMS MongoDB

Database Database

Table, View Collection

Row Document (BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard (数据水平切分到不同物理节点)

46Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BSON
 “Binary JSON”
 Binary-encoded serialization of JSON-like docs
 Also allows “referencing”
 Embedded structure reduces need for joins
 Goals

Lightweight (low space cost)/ Traversable (easy to traverse)/ Efficient (efficiently
decoding and encoding for most languages)

http://bsonspec.org/
BSON Binary storage

47Advanced Database Systems 金培权（jpq@ustc.edu.cn）

BSON Example
{ "_id" : "37010"

"city" : "ADAMS",
"pop" : 2660,
"state" : "TN",
“councilman” : { name: “John Smith”
 address: “13 Scenic Way”
 }

}

RDB

MongoDB

48Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Documents: Structure Embedded

49Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Documents: Indexing
 Indexes allow efficient queries on MongoDB.
 They are used to limit the number of documents to inspect (Otherwise, scan every

document in a collection)
 By default, MongoDB creates indexes only on the _id field
 Indexes are created using a B-tree and store data for fields, ordered by value.
 In addition, MongoDB returns sorted results by using the index.

50Advanced Database Systems 金培权（jpq@ustc.edu.cn）

MongoDB: CRUD
 Create

db.collection.insert(<document>)
db.collection.save(<document>)
db.collection.update(<query>, <update>, { upsert: true })

 Read
db.collection.find(<query>, <projection>)
db.collection.findOne(<query>, <projection>)

 Update
db.collection.update(<query>, <update>, <options>)

 Delete
db.collection.remove(<query>, <justOne>)

51Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Query Example

The same query in SQL

52Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Replication of data
 Ensures redundancy, backup, and automatic failover

Recovery manager in the RDMS

 Replication through groups of servers known as
replica sets (复制集)

 Primary set – set of servers that client tasks direct
updates to

 Secondary set – set of servers used for duplication
of data

 If the primary set fails the secondary sets ‘vote’ to
elect the new primary set

53Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Scaling: Heavy Reads
 Scaling is achieved by adding more read slaves
 All the reads can be directed to the slaves.
 When a node is added it will sync with the other nodes.
 The advantage of this setting is that we do not need to stop the

cluster.

PRIMARY> rs.add("mongod1.net: 27017")

Host Name/IP Port

54Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Automatic Failover

55Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Scaling: Heavy Writes
 Sharding, or horizontal scaling divides the data set and distributes the

data over multiple servers.
 Each shard is an independent database, and collectively, the shards

make up a single logical database.

56Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Sharding in MongoDB

 Shard
store the data

 Routers
interface to client and
direct queries

 Config Server
store cluster’s metadata.

57Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Range-Based Sharding
 Divides the data set into ranges determined by the

shard key values to provide range-based partitioning.

58Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Hash Based Sharding
 Computes a hash of a field’s value, and then uses

these hashes to create chunks

59Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Document Store: Advantages
 Documents are independent units
 Application logic is easier to write. (JSON).
 Schema Free:

Unstructured data can be stored easily, since a document
contains whatever keys and values the application logic
requires.
In addition, costly migrations are avoided since the
database does not need to know its information schema in
advance.

60Advanced Database Systems 金培权（jpq@ustc.edu.cn）

Suitable Use Cases
 Event Logging

where we need to store different types of event
(order_processed, customer_logged).

 Content Management System
because the schema-free approach is well suited

 Web analytics or Real-Time Analytics
useful to update counters, page views and metrics in
general.

61Advanced Database Systems 金培权（jpq@ustc.edu.cn）

When Not to Use
 Complex Transactions

when we need atomic cross-document operations

 Complex Queries
 i.e., aggregate queries where the involved data are
evolving with time
Complex join queries

61

62Advanced Database Systems 金培权（jpq@ustc.edu.cn）

本章小结

 NoSQL概念

 NoSQL的类型

 CAP & BASE
 MongoDB

	NoSQL Databases I:�Introduction
	主要内容
	NoSQL简介
	NoSQL简介
	NoSQL简介
	NoSQL兴起的原因
	MySQL集群能否解决问题？
	NoSQL兴起的原因
	NoSQL兴起的原因
	NoSQL vs. RDBMS
	NoSQL vs. RDBMS (cont.)
	NoSQL vs. RDBMS (cont.)
	NoSQL vs. RDBMS
	NoSQL vs. RDBMS
	NoSQL的主要类型
	NoSQL的主要类型
	NoSQL的主要类型
	键值数据库 （Key-Value Store）
	键值数据库 （Key-Value Store）
	列存储数据库（Column Store）
	文档数据库（Document Store）
	文档数据库（Document Store）
	文档数据库（Document Store）
	图数据库（Graph Store）
	Overall Rank
	Overall Rank (cont.)
	Overall Rank (cont.)
	NoSQL的分布式系统基础
	CAP
	CAP
	CAP
	CAP
	CAP
	CAP
	CAP
	BASE
	BASE
	BASE
	BASE
	MongoDB�A Document Store
	主要内容
	MongoDB
	What is a Document DB?
	MongoDB: Data Model
	RDB Concepts to Document DB
	BSON
	BSON Example
	Documents: Structure Embedded
	Documents: Indexing
	MongoDB: CRUD
	Query Example
	Replication of data
	Scaling: Heavy Reads
	Automatic Failover
	Scaling: Heavy Writes
	Sharding in MongoDB
	Range-Based Sharding
	Hash Based Sharding
	Document Store: Advantages
	Suitable Use Cases
	When Not to Use
	本章小结

